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Abstract

A “secure system” should be secure—but should also be
a system that achieves some particular functionality. A
family of secure systems that our group has been investi-
gating (and building) are high-end secure coprocessors:
devices that combine a general-purpose computing en-
vironment with high-performance cryptography inside a
tamper-responding secure boundary. With the appropri-
ate application software, such secure coprocessors can
solve security problems that otherwise would be difficult
or impossible.

In this paper, we examine a high-end secure coproces-
sor as a system: the programming environment it must
provide to support such on-card applications; the soft-
ware and hardware architecture we developed and imple-
mented to provide this support; and some of the lessons
we learned from this development.

This paper is not just an academic exercise, but a case
study of commercial research and development (leading
to a released product, the IBM 4758 [4]).

1. Introduction

A “secure system” needs to be secure against some spec-
ified attack set—but it also needs to be a system that
provides some particular functionality.

A family of secure systems that our group has been
investigating (and building) are general-purpose secure
coprocessors: devices that combine a general-purpose
programming environment with high-performance cryp-
tography, but can resist (and respond to) a wide variety of
physical and logical attacks. Such devices can be trusted
to carry out their operations despite a hostile environ-
ment (which may even include the host computer); with
the right application software, such devices can solve
security problems that otherwise would be difficult or
impossible (see [7, 16, 17] for some examples).

Previous reports on this work have focused exclusively
on security: security architectecture problems [9] and so-
lutions [11]; physical security [15]; FIPS 140-1 Level 4
validation [10].

In contrast, this paper focuses on the system itself. It is
easy to speculate about the programming environment
and services that such devices should offer to make these
on-card applications possible. However, actually build-
ing such a support architecture leads to a number of
challenges and subtleties:

� in specifying the environment,

� in ensuring the underlying hardware can support
this environment,

� and in developing and testing the software that pro-
vides this environment.



This paper presents our experiences in designing and
implementing an application support architecture for a
commercial high-end secure coprocessor.

Target The traditional model of a cryptographic mod-
ule (e.g., [6]), protects cryptographic keys and algorithms
within a secure perimeter. In contrast, a general-purpose
secure coprocessor moves beyond this traditional model
to also protect non-cryptographic data (such as meter
balance) and non-cryptographic algorithms. As a fun-
damental property, such devices must offer fairly com-
plex programmability—for ever-evolving cryptographic
algorithms, for more advanced protocols that build on
basic cryptography, or even for security-relevant algo-
rithms and applications that have very little to do with
cryptography. Hence, such a device must have both a
general-purpose CPU (for the software algorithms) while
also having cryptographic hardware to avoid tying up the
limited resources of this on-board CPU. Our coprocessor
is a PCI card, with ample computational power (a 486-
class CPU, megabytes of memory) and cryptographic
acceleration: modular math, DES, and hardware ran-
dom number generation; see Figure 1. (More advanced
hardware adding 3DES and SHA-1 is in development.)

We wanted this device to be a general-purpose platform
that is sufficiently flexible to support the full spectrum
of current and projected secure coprocessor applica-
tions. Minimally, it needed to support an application
that transformed this device into an accelerator for the
Common Cryptographic Architecture (CCA) API [1]. It
also needed to allow any future applications to be poten-
tially validated against FIPS 140-1 (the US standard for
secure cryptographic modules).

This plan led to three goals:

� security: a non-tampered card should always be
able to prove its authenticity and its software con-
figuration;

� programmability: different instances of the same
basic platform should be customizable by third-
party application developers;

� application support: the device’s computational
and security features can be effectively used by
these applications.

This paper focuses on how we addressed the third goal,
application support.

The security and programmability goals led to the layered
software architecture shown in Figure 2. But the applica-
tion support goal involved crafting an API and software
architecture for Layer 2—and ensuring the underlying
software layers and hardware could support it. This
supervisor-level “helper” layer would offer services that
simplify the development process for user-level Layer 3
applications; such services should include:

� a programming environment,

� communication with the outside world,

� secure data storage,

� cryptography,

� and (when appropriate) debugging tools.

This helper Layer 2 must also isolate Layer 3 from the
underlying hardware complexity.

Furthermore, the design of this support architecture must,
where possible, also speed development of the support
code itself—since this project was part of a product re-
lease (the IBM 4758 [4]) driven by very real market
deadlines.

Overview of Application Support Architecture
To achieve these goals, we refined the basic structure
of Figure 2 with the application support architecture of
Figure 3. Section 2 presents the secure loading and hard-
ware protection of our configuration control software,
which permits safe use of the basic platform for devel-
opment and debugging. Section 3 presents the kernel that
provided the foundation for this architecture. Section 4
through Section 8 present the other managers that com-
prise the Layer 2 software. Section 9 presents how these
pieces work together to provide a programming environ-
ment for applications. Section 10 presents our experi-
ences in integrating these pieces together. Section 11
discusses some ongoing work at evaluating and refining
this architecture.

2. Secure Bootstrap

Developing application software for a physically encap-
sulated, secure device raises a fundamental question:
how does the developer get software into the device?
Further consideration of this problem leads to more sub-
tleties, particularly when business constraints dictate that
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one type of off-the-shelf device must support a wide vari-
ety of development and deployment scenarios, including
maintenance of software in the hostile field and authen-
tication of executing software [9].

To address these issues, we developed our Minibootsecu-
rity bootstrap software that resides in ROM and Layer 1
FLASH, and runs at boot-time [11]. Miniboot controls
device configuration, and enables any particular device
to be configured as “development” without risking con-
tamination of live, production devices. Our approach
separates layer ownership from layer contents, and thus
allows safe testing of development software with the
production-level Layer 2. The flexible loading structure
also allows “hot” substitution of different versions of
Layer 2 and Layer 3.

For example, the developer might first configure the de-
vice for development, and then install a debug Layer 2.
He can then iterate loads of Layer 3 (opting to preserve
state, if that assists debugging). When the developer is
ready to test a near-final application, he can switch from
the debug Layer 2 to the real one (and then switch back,
if more bugs show up). But all the time, this card is
in “development” mode and cannot impersonate a live,
production card.

The constraint that Miniboot function correctly without
any assumptions about the behavior of the code in Layer 2
and Layer 3 led to some early hardware re-design; in par-
ticular, the use of proprietary hardware locks to ensure
integrity of Miniboot code, data, and keys, while still al-
lowing Layer 2 to have full supervisor (“ring 0”) access
to the 486-class CPU [11].

Development of Miniboot itself raised some challenges.
Because it needs to talk with the outside world and use
internal memory and cryptographic hardware, Miniboot
needs many of the same services as the applications. We
addressed this need by equipping Miniboot with sim-
plified versions of the Layer 2 components—sometimes
even compiled from the same source files.

3. Kernel

Application development requires a programming envi-
ronment. The support code providing specialized hard-
ware services, such as cryptography, requires a program-
ming environment, and also requires privileged access
to the appropriate internal hardware devices.

To address these problems, we designed our Layer 2
around the foundation of a kernel that provides the
programming environment necessary both for Layer 3
(which runs at the least-privileged level) as well for as
the various additional Layer 2 components (which run at
the same privilege level as the kernel). We decided to
build from a pre-existing kernel, since developing one
from scratch would not fit within our implementation
timeframe. This kernel should:

� provide separation between address spaces for dif-
ferent computational entities;

� provide for multiple threads of execution, even
within the same address space;

� provide dynamic-build configurability, to facilitate
parallel development of both user-level application
code and supervisor-level device drivers and man-
agers;

� provide debugging tools for both user and supervi-
sor code; and

� work with standard tools (compiler, linker, etc.).

After much consideration, we chose CP/Q, a mature
OS for industrial embedded systems, because it met all
these requirements. CP/Q also had a small footprint,
good performance, and was based on message-passing
(which was more appropriate than shared-memory for the
communication paradigm we foresaw—although CP/Q
does not preclude sharing memory for long-lived interac-
tions). Furthermore, we had access not just to its source
code, but to the expertise of its development team as
well.

This kernel itself provides a rich programming environ-
ment (e.g., private address spaces, multiple execution
threads) to the Layer 3 application. Furthermore, the
kernel also provides these properties to other Layer 2
entities. Thus, this kernel enabled us to partition the ad-
ditional required services into related groups,and then in-
dependently develop managers (independent code mod-
ules, each in their own address space) to implement each
group.

Using a well-tested kernel with well-tested kernel-level
tools helped in more than just developing the managers
and applications that ran on top of the kernel—it also
helped with developing the Miniboot security software
that (ordinarily) would run before the kernel. Using sim-
ulations of the various hardware devices, we ran devel-
opment versions of Miniboot on top of the kernel—and



gradually replaced simulations with direct calls to the
“metal.”

OS Security Although the CP/Q kernel was nei-
ther designed nor tested for resilience against malicious
application-level code, this drawback is not an issue with
its use in this system. The “Orange Book” OS require-
ments in the FIPS 140-1 validation process only apply
if the OS protects validated code from unvalidated code.
However, in our architecture, the entry of all code into the
device is controlled by Miniboot. We have successfully
validated our hardware and Miniboot control software at
FIPS 140-1 Level 4 [10]; consequently, in order to val-
idate a device customized with a particular application,
the developer of that application only needs to validate
his additional software (Layer 3 with Layer 2) on the
device. Two of our group’s current research projects
include investigating “partial” validation of our Layer 2
software (to lower the validation barrier for application
developers even further), as well as the issues involved in
building a provably secure embedded OS from scratch.

4. Communications

Work done within the card’s protected environment is
presumably done on behalf of something in the outside
world—and the most natural starting point is the (possi-
bly untrusted) host. Thus, an on-card application should
have at least one host-based communication partner. We
needed to provide a way for these partners to identify
and address messages to each other; we also needed to
provide an underlying mechanism for fast transport of
these communications.

We address these problems with the COM Manager, the
SCC1 Manager, and some special-purpose hardware.

Partners Potential models for card-host interaction
can vary greatly in complexity. Who should talk to an
on-card application? How many instances of an on-card
application can there be? What if an on-card application
wants to send an unsolicited message?

To speed our design and implementation process, we
start with a very simple model: each on-card entity has
a host-side partner that initiates work requests, to which

1“Secure Crypto Coprocessor”: the environmentoffered to the on-card
application.

the card-side entity responds. Our Layer 2 software pro-
vides these services via a relatively simple API provided
by the COM Manager, which works in conjunction with
the routing and registration tables maintained by the SCC
Manager, as well as the host-side device driver. Within
the card, the SCC Manager maintains an Agent Table
containing entries for each Agent ID (externally visible
name). The sole way that an on-card application task
becomes visible to the host is via an entry in this Agent
Table. The SCC Manager creates such entries at the be-
hest of the application task itself, but other supervisor
entities also access the Agent Table. (In particular, the
COM Manager does a look-up in order to route external
work to the appropriate internal agent.)

When an application thread is ready to receive commu-
nication from the host, it signs on (through the SCC
Manager), announcing that it is “open for business”
under some specified Agent ID already known by the
host-side application. Its host-side partners can then
send messages to this agent (although the application
and its partners should use additional cryptographic and
authentication measures if the communication channel
is considered insecure). If appropriate, an application
can establish multiple Agent IDs, or use the Agent ID to
distinguish between different instances of itself.

At first glance, it might seem that the request-response
service model is overly limiting. For example, what
about a long-lived fraud detection application that sends
out alerts only when it detects some critical situation? In
theory, the ability for each internal application to have
multiple agent names (for receiving messages from the
outside) provides an avenue for application-initiated con-
versation, while still allowing the simpler device-driver
behavior of the request-response model. (We will see
how effective this avenue is in practice.)

Fast Data Movement An orthogonal set of issues—
especially critical for the design goal of “high-
performance cryptography”—is how to move data
quickly between the host and the card. One might spec-
ulate that device hardware links together an I/O port on
each machine, and the machines move data by having
one CPU send a byte to its port, and the other CPU
pick it up. However, this ties up both CPUs—which, in
a multi-tasking environment, prevents either CPU from
doing more useful work during the transfer.

To address these problems, our hardware includes special
first-in, first-out (FIFO) queues, controlled by the COM
Manager software. (FIFOs integrated better into our
hardware and had smaller impact on the host than other



approaches, such as dual-addressable memory.) At the
request of other software, the COM Manager configures
these queues to provide pipelines for bulk communica-
tions:

� between the host and card (e.g., Miniboot command
and application exchanges);

� between two points internal to the card (e.g., per-
haps from RAM through DES and back); and

� between two points external to the card (e.g., bulk
DES from host RAM through the card).

Since the host is usually running a multi-tasking op-
erating system, the host device driver should also use
non-CPU-intensive DMA hardware to transfer data.

5. Secure Persistent Storage

Applications (and, possibly, supervisor code) need stor-
age that persists over hardware reboots, power cy-
cles, and subsequent invocations of that application.
Depending on the data, the calling software may re-
quire integrity (the stored data will not change due to
error or malice), secrecy (the stored data has not been re-
vealed to an unauthorized party, including someone who
physically attacks the device), and/or atomicity (the data
changes as an atomic unit, despite interruptionor failure;
no inconsistent, intermediate states are visible).

Our hardware includes two underlying storage com-
ponents: FLASH and battery-backed RAM (BBRAM).
However, using these components is complex.

FLASH provides large amounts of non-volatile, non-
zeroizable storage:

� The minimum erasable unit in FLASH is a sec-
tor. The sizes of the sectors vary from 4KB to
64KB, depending on where they reside in the phys-
ical FLASH chip.

� Each sector can only be erased a finite number of
times before the FLASH chip fails.

� Bits in FLASH can be cleared to zero by a special
writing process, but can only be set to one by erasing
the entire sector.

� FLASH can be read like ordinary memory, but writ-
ing FLASH requires first writing a special sequence

of commands to the device. Erasing FLASH is even
more complex and time-consuming.

� The contents of FLASH are available to any attacker
who pries open the card.

BBRAM provides small amounts of non-volatile, zeroiz-
able storage:

� Unlike FLASH, BBRAM data can be randomly ac-
cessed and changed; however, this access must oc-
cur over a several-step I/O process to the BBRAM
chip.

� BBRAM is zeroized by tamper-response.

� Bits in BBRAM that store the same value for too
long can imprint that value, remaining visible de-
spite zeroization.

Some types of data storage require using both devices.
For example, since design constraints permit megabytes
of FLASH but only a few KB of BBRAM, storing large
amounts of secret data requires using BBRAM to store a
session key that decrypts the ciphertext stored in FLASH.

Solution The protected program data (PPD)2

Manager provides a simple API for secure persistent
storage, while masking the complexity of the underlying
storage components. It treats FLASH sectors as a cir-
cular buffer, in order to spread the erasure cycles evenly
over the memory. Transparent to the caller, the PPD
Manager provides atomicity for FLASH writes and (at
the invoker’s request) will encrypt stored data using keys
safely stored in BBRAM. (This use of DES makes PPD
a “manager who uses other managers”—increasing its
complexity.) To avoid BBRAM imprinting, we periodi-
cally invert the contents of BBRAM, transparently to the
application. (We also ensure that this inversion is itself
atomic.)

Like the FIFOs, both BBRAM and FLASH have the
property that these are singular devices. Consequently,
concurrent access from different code modules would
be successful only if these modules use semaphores or
some other software technique to ensure consistent, se-
rializable access. To simplify development, we instead

2We deliberately avoided using the FIPS 140-1 term security relevant
data items (SRDI) in order to minimize confusion. Depending on one’s
FIPS validation strategy, not all SRDI may be PPD, and not all PPD
may be SRDI.



force all software access to BBRAM or FLASH to go
through an API supplied by the PPD manager.

(Miniboot also must have secure, persistent storage.
However, as Section 2 notes, Miniboot has its own stor-
age regions, and uses hardware locks to block access
by anyone—including the PPD Manager—that executes
later.)

6. Public Key Cryptography

Our underlying hardware for public-key cryptography is
a modular math engine. Our PKA Manager must use this
underlying hardware to provide RSA and DSA services
to Layer 3 code (and, potentially, to other Layer 2 man-
agers). However, this manager should keep hardware-
specific details transparent to the calling code, including
contention from these multiple algorithms and services
for the same basic engine.

Accommodating the goal of speedy development of
correct application support code yields additional chal-
lenges. As noted earlier, Miniboot needs similar PKA
services. Furthermore, host-side test tools—and card-
side Miniboot and Layer 2 software during develop-
ment—need these services without having access to a
modular math engine.

Solution We addressed these problems with the PKA
architecture shown in Figure 4: a core library can provide
various high-level and low-level interfaces, selectable at
compile-time.

Low-Level Code Our PKA Manager contains sev-
eral sets of low-level routines. Since the hardware accel-
erator only does modular math, our PKA code needed a
large-integer math library to handle all the operations (i.e.
fast adding, multiplying, etc., of large integers in native
format) not directly supported by the hardware. Key gen-
eration additionally requires software support for gener-
ating large prime numbers—the most time consuming
operation in the key generation process. (We used the
ANSI X9.31 standard specifying strong primes.) Key
generation also requires randomness—making the PKA
Manager another “manager who calls other managers.”

High-Level Algorithms Our PKA Manager sup-
ports the RSA and DSA cryptosystems. For RSA, we

support both encryption and signatures, and support (via
caller-selected options) the ANSI X9.31 standard (which
was still in draft form during our implementation). Given
the complexities of U.S. export policy (and the fact that,
in many export scenarios, the maximum key length de-
pends on the context of use), we decided to enforce no
export limits in our Layer 2 API; instead, we leave this
responsibility to the Layer 3 application.

Simply choosing “the RSA cryptosystem” still leaves
decisions on how to extend data (for signatures, the
hash; for encryption, the session key) to the full modu-
lus length. For signatures, we implement two variations
on the ISO 9796 scheme; for encryption, we implement
the Optimal Asymmetric Encryption Padding (OAEP)
scheme.

Although many commercial customers use RSA exclu-
sively, we also support DSA because FIPS 140-1 appli-
cations and many government customers are restricted
to digital signature systems approved by the US gov-
ernment. (The FIPS 186-1 standard, allowing for ANSI
X9.31 rDSA, was not approved until after our implemen-
tation deadline.)

Because of the time-consuming nature of generating key-
pairs, and the fact that only one modular math engine
exists in our device, we allow other PKA operations to
complete during a key generation operation that may
have been requested earlier. We check for such opera-
tions at different points during the key generation process
(i.e., before starting software/CPU intensive operations).

We are currently exploring several other techniques to
increase the throughput of various cryptographic opera-
tions.

Transparency A modular math engine has some very
specific hardware properties: its maximum modulus size,
and whether the duration of its operations leaks informa-
tion about the operands (making it susceptible to timing
attacks [5]). In our current hardware, the engine has a
limit of 1024 bits and leaks timing information. In order
to make these limits transparent, the supporting software
accommodates larger modulus sizes (and reduces them
to calls to the 1024-bit engine), and provides support for
blinding as a defense against timing attacks.

However, as we port this software to prototype hardware
with an advanced engine that is subject to neither of these
limits, some new issues arise. Many current applications
use a de-facto limit of 1024 bits anyway, due to the in-
creased performance hit associated with moving beyond
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Figure 4 The structure of our public-key cryptography software.

the engine limit—and also sometimes due to hardcoded
limits in legacy host-side code. Furthermore, due to the
complexity and performance hit of software blinding,
the calling software needs to know whether it is neces-
sary or not. (Some users of application software have
already expressed concern that the application does not
use blinding anymore on the new prototype.) In hind-
sight, what really needs to be transparent is “protection
against timing attacks” rather than the details of a partic-
ular technique which the calling software must explicitly
invoke.

7. DES

Our underlying hardware for DES is a high-speed, pro-
prietary DES engine. However, although a design goal
was to provide fast bulk DES, approaching the crypto-
graphic performance theoretically possible from the un-
derlying engine requires addressing a number of issues.

For bulk DES, the primary design issue was data trans-
port. We began with the special FIFO hardware dis-
cussed in Section 4; the DES Manager can access the
engine a byte-at-a-time via programmed I/O (PIO) or via
DMA through the FIFOs. The existence of two meth-
ods is transparent for DES operations where both the
source and destination are inside the card—the manager
optimizes performance by using either PIO or DMA, de-
pending on a size threshold established at build time.
(This threshold accommodates the trade-off between
using CPU cycles for PIO, versus using them for set-
up and interrupt handling during DMA.)

However, when the source and/or destination resides on
the host, then the choice of method cannot be transparent
to the calling code, since someone on the host-side needs
to prepare to ship or receive the data. In these situations,
the calling software must indicate the transport method to
be used. To optimize performance, the caller should also
account for trade-offs—for example, it might be quicker

to route DES operations on small data packets into the
card for internal PIO.

When the FIFOs are routed through the DES engine, the
data will be fed to and extracted from the DES engine as
fast as the chip can handle it. However, we found em-
pirically that maximizing bulk-DES speed is also highly
dependent on host-side issues beyond the control of co-
processor hardware and software. These issues include
page-alignment of source or destination data within the
host memory, as well as other host software competing
for host bus resources. Sometimes, apparently identi-
cal host systems would yield significantly different DES
speeds, due to such issues.

API Issues A number of subtleties emerge in provid-
ing an API to a bulk-DES engine. Since bulk data may
not necessarily be a complete number of DES blocks, our
API provides pre-padding and post-padding options (so
the calling software can specify “use this bulk data, but
adjust it with these specific bytes”). The need to break a
DES operation across multiple calls to the DES Manager
(perhaps because not all the data was available for DMA
in one shot) also requires that the API include termination
vectors: the eight bytes at the end of a stream operation
that should be used as the initial vector of a subsequent
stream operation, for these operations to be composed
as a single operation. We provide software for CDMF
weakening of 56-bit keys to 40-bit, although (as with
RSA) our Layer 2 API enforces no export limits on what
it does on behalf of Layer 3. We are currently porting
our software to prototypehardware that uses an advanced
DES engine with native 3DES support—which, among
other things, underscores a need for user education re-
garding the modes of 3DES: the existence of over 200
chaining variations [2] and the trade-offs between inner-
CBC, outer-CBC, and the chaining modes permitted in
the 3DES standard.



8. Random Number Generation

Fast availability of random numbers is critical to the
performance of many algorithms, in cryptography and
security, as well as other areas. Our device hardware
includes a thermal noise source that generates a serial
stream of random bits, collected in a 16-bit shift regis-
ter. However, our RNG Manager must bridge the gap
between this time-sensitive hardware and the various
Layer 2 and Layer 3 software modules that need random
numbers.

Solution The RNG Manager has two primary tasks:
gathering bits from the hardware, and providing them to
calling software. To optimize performance, we divided
the RNG software into two threads. One thread runs at a
high priority (because of the critical nature of providing
random numbers) and performs three simple tasks:

� handling the interrupts that signal a full collector
register;

� gathering these 16-bit values into a set of eight fresh
random bytes; and

� passing these eight bytes to the upper component.

The other thread runs at lower priority (to avoid need-
lessly preempting other software tasks) and handles in-
coming requests for random numbers (from other man-
agers and applications), and any optional processing
specified by these requests (e.g. specific parity, check
for weak DES keys, etc.).

PRNG Our software design did not initially ad-
dress pseudo-random number generation (PRNG), since
we assumed that hardware-generated random numbers
would be universally regarded as a better source, and
since our hardware RNG passed the full suite of statisti-
cal and continuous tests for FIPS 140-1. However, these
assumptions proved to be incorrect. Some standards
for key generation within particular cryptosystems spec-
ify particular PRNG algorithms; the FIPS 140-1 stan-
dard for secure hardware requires an approved PRNG
between hardware randomness and any key material.
Furthermore, for performance, some application pro-
grammers prefer the faster stream from a PRNG to the
relatively slower hardware RNG. To accommodate this,
we added a PRNG and various calling and filtering op-
tions to the software suite.

Entropy In theory, one might expect that a PRNG
should be re-seeded from the hardware RNG as often
as possible, to maximize entropy. In practice, this is
not true. Many scenarios—such as testing algorithms,
and OEAP padding—also require using a PRNG with
reproducible results. Accommodating these scenarios
required having our code explicitly make the PRNG a
deterministic function transforming a context to a pair
consisting of a random number and a new context.

9. The Application Layer

Our main goal in building this device was to make it easy
to develop and run the secure coprocessing applications
suggested by previous research. Miniboot provides a
means to get the application image into the device itself.
But actually connecting this image into the system con-
sists of two main tasks: how Layer 2 initially invokes
the application, and how the application then accesses
the Layer 2 services.

Invoking the Application Design goals required
that the Layer 3 application be changeable independent
of Layer 2. For example, application developers may
wish to reload successive test versions of their code; ap-
plication deployers may wish to occasionally upgrade
their code; and an overarching goal was maximizing in-
dependence of these developers from us, the platform
vendor. [9].

As a consequence, our Layer 2 needed to have a mecha-
nism to, at run-time, load a Layer 3 component that had
not been present when the Layer 2 image was originally
built.

Within Layer 2, the SCC Manager accomplishes this
by regarding Layer 3 as a simple file system containing
the executable module of the user application. During
system start-up, the SCC Manager retrieves the user ap-
plication from this file system and loads it as a program.
(A loaded application can then dynamically create addi-
tional threads of execution from code already loaded.)

This basic mechanism also provides for much more flex-
ible schemes, which we are only beginning to explore
in prototype. For example, we could support classi-
fied or proprietary applications—that must never reside
in FLASH in plaintext—by dividing Layer 3 into a ci-
phertext application and a plaintext unwrapper. The un-
wrapper is loaded at boot-time; later, it provides a key to
Layer 2 and requests that the remainder be decrypted and



loaded. More complex multi-application and dynamic
loading scenarios are also possible—including those
that transcend our current “single sandbox” model—
but these will require addressing security and garbage
collection problems (using solutions that build on the
separation features that currently are just programming
conveniences).

Using the Services The choice of the CP/Q kernel
(Section 3) provides a rich programming environment
for applications: developers can write code in C with
standard libraries (including printf(), when debug-
ging); compile and link with standard tools; and (when
the card is configured in development with the debug
kernel) have full access to a source-level debugger.

The application can access our additional manager ser-
vices via function calls (although the library hides the
underlying mechanism, which may be a system call or
message passing). For potentially lengthy hardware op-
erations, we provide both synchronous (blocking) and
asynchronous versions of these calls.

Areas for Improvement Ongoing application de-
velopment work by both commercial and academic part-
ners reveals several areas for potential improvement. For
example:

� The requirement that generic off-the-shelf devices
be used for development leads to a two-minute delay
each time the code is reloaded through Miniboot,
and also permits developmental card-side and host-
side applications to thoroughly confuse the host-
side device driver.

� The requirement to give developers an option to re-
place on-card code without clearing on-card state
forces application programmers to examine and re-
spond to more initial states than might be expected.

� The design decision to make the card self-
contained—not storing code or data on the host—
has some advantages, including an architecture that
will easily port to our portable PCMCIA prototypes.
However, it also has some disadvantages; for ex-
ample, application developers who wish to exploit
cryptopaging [16] are forced to work with a custom-
modified Layer 2.

10. Integration Issues

To some extent, real commercial deadlines for this
project drove our strategy: start with an existing em-
bedded kernel and debugger, then have independent pro-
grammers concurrently build the different managers, the
security bootstrap, the initial application layer, and the
host-side support software.

Successes To large extent, this strategy worked. In
particular, the modularity of the CP/Q environment sim-
plified testing. For each unfinished code module, a test
version existed that provided stubs for the other mod-
ules that interacted with it. Each team could then inde-
pendently exercise their module under the CP/Q kernel,
using these stubs to form a skeletal system. Because
of the existence of a supervisor-level kernel debugger,
these skeletal systems did not even require host-to-card
communications. As noted earlier, we also reused source
code between Layer 1 and Layer 2—which reached its
most elegant form in the common PKA, DES, and RNG
source libraries. (The modularity also permitted con-
current, independent development of CCA application
code.)

Challenges The modularity also led to some chal-
lenges. Independent managers that are invoked and exe-
cuted as separate computational entities led to some un-
expected interactions (e.g., deadlocks at boot-time), as
well as to the expected problems (e.g., misunderstand-
ings of the interface, common usage of devices) and
decisions (e.g., how to tune the relative priorities of the
managers).

Drawbacks On the other hand, this strategy also led
to some negative things. Sometimes, the modularity di-
vided design and programming tasks that should have
been a unit: for example, in hindsight, a strong case
exists for generic public-key and private-key operations
and data structures, rather than different styles for RSA
and DSA (and, eventually, elliptic curve). Sometimes
the modularity also led to an illusion of locality: for
example, since statistical testing of the hardware RNG
takes approximately 30 seconds on our first-generation
device, we attempted to streamline Miniboot operations
with no key generation by having the RNG Manager
test itself when it is first called—but, to our surprise,
this did not improve performance, due to the unexpected
intertwining of DSA and RSA code with the RNG.



11. Conclusions and Future Directions

Numerous areas exist for evaluation and tuning of this
application support architecture.

For example, did we provide the right set of operation
primitives? It turns out that some applications need to
use BBRAM for frequently updated data, where speed
and long life is more important than transparency and
atomicity. As a result, we are extending the PPD API to
include such an “updatable” item. For another example,
some application developers might appreciate a modular
math API, perhaps to complement RSA and DSA with
their own elliptic curve implementation. Quantitatively
analyzing sample applications, to see how performance
could be improved by combining primitives or offering
new services as primitives, could also prove fruitful.

Many potential areas exist for tuning the architec-
ture to better achieve the goal of high-performance
cryptography—since raw speed of individual pieces
of hardware or software do not always result in high
throughput. Between a host-side call for cryptographic
services and its card-side fulfillment lie many routing
and buffer choices, that can be balanced among host/card
CPU loads and speeds, as well as other security and per-
formance concerns. The relative priorities and sched-
uling of the on-card managers and application code is
another area for examination. As noted earlier, we are
currently exploring other several techniques to increase
cryptographic throughput.

As a side-effect of quantifying and explaining the cryp-
tographic performance of our device, we continually en-
counter a fundamental unsolved problem: benchmarking
cryptographic performance for meaningful comparison.
Does one measure performance from the host or from the
internal CPU—or does one merely extrapolate a theoret-
ical speed from the advertised spec for the raw engine?
For RSA, does one consider full random exponents, or
exponents carefully chosen to optimize performance?
(Does one even consider the overhead of safely handling
the private key, or of software blinding?) For DES,
what size plaintext does one consider? For 3DES, which
mode?

However, our overall goal was to build not just a cryp-
tographic accelerator, but a general-purpose secure co-
processor. The true test of our support architecture will
come as future experimental (and commercial) applica-
tions begin to exploit the potential of putting compu-
tation, not just cryptography, inside a trusted, tamper-
protected environment.
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